Plasma cutting uses the 'transferred arc' mode, where the arc is maintained between the electrode and the material to be cut. A pilot arc is struck between the electrode and the constricting orifice. This cutting process uses gas flows consisting of active or inert gases or gas mixtures. Blowing in a secondary gas, which flows around the plasma arc as a gas sheath, further constricts the arc, causing the energy flow density and the temperature of the plasma jet to rise even further.
This method is associated with a high energy density heat source as this is required to melt and eject molten material in the high velocity plasma jet. It is suited to a wide range of ferrous and non-ferrous alloys and is particularly suited to aluminium alloys and stainless steel.
Key to the success of the plasma cutting process is the right plasma gas or gas mixture. Depending on the individual application, argon/hydrogen mixtures, nitrogen, air or even oxygen and water-cooled electrodes with tungsten tips may be suitable. Secondary gases include carbon dioxide, nitrogen and air.
We can support your cutting process with a range of pure gases and gas mixtures tailored to the needs of plasma arc cutting. In addition, our application experts can advise you on the mixture best suited to your needs. They can also help you select the correct operating parameters for optimum results and support you with the equipment and gas management services you need.
Benefits at a glance:
High purity process gases
High cutting speed
High cutting quality
Customized supply solutions