1. Record baseline performance data
 → Record temperature and pressure measurements throughout the system (compressor suction and discharge, evaporator, condenser)
 → Derive superheat and subcool values
 → Record oil type and charge size, system set points and any other key operating parameters

2. Recover existing HCFC refrigerant charge
 → Refrigerant gases must be handled properly. Please consult material safety data sheets for detailed safety precautions
 → Linde does not recommend mixing HCFCs with HFCs. Therefore the full original HCFC charge should be recovered
 → Do not overfill recovery cylinders
 → Do not mix recovered material with other gases
 → Weigh total amount of refrigerant charge recovered

3. Choose compressor lubricant (oil)
 → In some cases the system may require a change of oil type from MO or AB to POE, in which case carry out Step 3a - Oil replacement and system flush
 → In cases where no change in oil type is needed, simply replace oil with the same volume of equivalent type if necessary (e.g. if contaminated) and move to Step 4

3a. Oil replacement and system flush (where necessary)
 → Drain lubricant & dispose of it in accordance with all applicable local regulations
 → Recharge with replacement POE oil, using the same volume as removed.
 → Recharge system with original HCFC refrigerant
 → Run the system for period of time (minimum 1 hour, 24 hours recommended) to circulate the new oil and flush original residual oil to compressor
 → Repeat flushing process until original residual oil is at correct level. (Commonly accepted guidelines are <5% original oil, see specific refrigerant guidelines for accepted levels)
 → Recover the HCFC refrigerant again as in Step 2

4. Follow correct end-of-life process for recovered HCFC refrigerant
 → Recycle, reclaim or destroy as necessary
 → Do not vent to atmosphere
 → Speak to Linde for further details on end-of-life options available to you
5. Overhaul refrigeration system
 → Replace filter-driers, suction filters, gaskets, and any other elastomer seals in contact with the refrigerant

6. Evacuate system and check for leaks
 → Evacuate to “full vacuum” on both low and high sides of the system
 → Perform pressure leak test. Note: leak test should not be carried out with mixtures of HFCs with air, oxygen or other oxidising materials
 → Make repairs as necessary

7. Charge with new refrigerant
 → If filling with a zeotropic blend (e.g. “400 series” blends), ensure that you charge in liquid phase to prevent fractionation
 → Charge to the stated percentage of existing charge weight as detailed in the product retrofit guide
 → Do not charge liquid refrigerant into the compressor as it will cause serious irreversible damage

8. Check system operation
 → Start up system, monitor and adjust expansion device, operating controls and/or refrigerant charge size
 → If adjustment is not possible, or inadequate, replace expansion device
 → Monitor oil levels in compressor and top up as necessary
 → If oil level continuously falls, or large oscillations occur, review and confirm oil content and compatibility

9. Label the system and fill in log books as required