LoTOx™ System.
Low temperature oxidation for NOx control.

Process Description

The Low-Temperature Oxidation (LTO) process is a patented process for removal of NOx and other pollutants from waste gas streams.

Linde’s LoTOx™ technology is an end-of-pipe system that removes NOx by adding ozone to oxidize insoluble NO and NO₂ to N₂O (a highly soluble species of NOx) which can be effectively removed by a variety of Air Pollution Control (APC) equipment, such as wet or semi-dry scrubbers or wet electrostatic precipitators (WESP). LoTOx™ can be used as a stand-alone treatment system, where inlet NOx levels are moderate, or can be used cost effectively as a polishing system in conjunction with combustion modifications such as Low NO burners (LNB) or other post-combustion technologies such as Selective Non-Catalytic Reduction (SNCR) for NOx removal. Ozone is generated on site and on demand from oxygen and is either completely consumed in the LoTOx process or residual ozone is destroyed in the scrubber system. NOx capture in wet scrubbers results in a dilute nitric acid stream which after neutralization is either sent for waste water treatment or for recovery as a valuable by-product in large industrial and utility systems. Calcium nitrate, a valuable commercial fertilizer, can be produced as a saleable product in systems using lime scrubbers. NOx capture in a dry/semi-dry scrubber results in a waste stream of nitrates mixed with other solids such as particulate matter, sulfides, chlorides, etc.

LoTOx™ System Chemistry

Gas Phase Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Relative Reaction Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO + O₃ → NO₂ + O₂</td>
<td>Fast</td>
</tr>
<tr>
<td>2NO₂ + O₃ → N₂O₅ + O₂</td>
<td>Fast</td>
</tr>
<tr>
<td>CO + O₃ → CO₂ + O₂</td>
<td>Slow</td>
</tr>
<tr>
<td>SO₂ + O₃ → SO₃ + O₂</td>
<td>Very Slow</td>
</tr>
<tr>
<td>Hg⁰ + O₃ → Hg²⁺ + O₂</td>
<td>Fast</td>
</tr>
</tbody>
</table>

Liquid Phase Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Relative Reaction Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂O₅ + H₂O → 2HNO₃</td>
<td>Very Fast</td>
</tr>
</tbody>
</table>

- Ozone is highly selective for NOx relative to other combustion products
- NOx is rapidly converted to water soluble species
- The resulting N₂O₅ is readily absorbed by aqueous scrubbing solutions or adsorbed by dry/semi-dry scrubber adsorbents.
Overall Benefits

- Lowest Achievable Level of NOx Emissions
- Easily Tuned for Variable Loads
- Low Temperature Operation
- Fully Automated
- No Secondary Gaseous Pollutants Generated
- Consistent Reliable Performance Regardless of Fuel Type
- No Effect of Particulate Matter on NOx Removal
- Simultaneous Oxidation of Hg and other Contaminants
- Easily integrated with existing wet scrubbers

Applications

- Utility Boilers (Coal, Petcoke, Lignite fired)
- Industrial Boilers (Gas, Coal, No. 6 Oil)
- Kilns, Furnaces and Ovens (Lead, Iron Ore, Zinc/Copper, Glass, Cement)
- Waste Combustors (Bio-waste, tires, industrial wastes)
- Acid Gas Streams (Exhaust from pickling and chemical processes)
- FCC Off Gas (licensed to Dupont™ Belco® Clean Air Technologies)
- Incinerators (Municipal, Industrial)

Commercial Application

Systems using the patented LTO process have been installed in a number of challenging applications where particle and metals laden waste gas streams have had to be treated to very low NOx levels to meet national or local air quality requirements. More than 30 full scale commercial systems have been installed across a range of different market segments, including; gas, coal and petcoke fired boilers; a metals furnace, a stainless steel pickling plant, sulphuric acid plants and multiple FCC regenerator offgas treatment plants. Flue gas volumes treated range from 6300 Nm3/hr to 620000 Nm3/h; inlet NOx levels range from 60 to 6000 (more typically 100–600) mg/Nm3 with typical outlet NOx levels required in the range from 20 to 90 mg/Nm3. Under design conditions a total of over 7 million Nm3/hr of polluted air is treated in the systems resulting in the removal of more than 15,000 MT of NOx each year.

Linde modular ozone and oxygen supply systems enable quick and easy retrofit of the LoTOx process into customer’s existing APC systems without significant changes or additional major process equipment. The small, modular system footprint allows flexibility of the equipment layout to meet unique spatial requirements for a variety of applications and industries. Custom-designed LoTOx™ systems are commercially used in treating large gas streams containing NOx and have demonstrated consistent performance to remove NOx on combustion systems fueled by natural gas, oil, and coal. The NOx removal performance does not deteriorate with respect to time in spite of heavy dust loading and the presence of other contaminants. The on-site generation of ozone to treat NOx results in a highly responsive control system for treatment of single point sources with variable loads or fuels, or multiple point sources combined into a single treatment system.

The LoTOx PSO

- Feasibility study and demonstration
- Process license
- Basic engineering package, detailed engineering support, startup and troubleshooting with and without process guarantees
- Oxygen and/or ozone (Gas) sales
- Complete Turn-key LoTOx system along with co-operation partner

Demonstration

Linde has developed a LoTOx™ Demonstration system that has been successfully used to demonstrate performance of LTO on costumer processes, and to develop detailed process and operating data for use in designing full scale installations. Contact Linde’s Chemical Industry Markets Team to inquire about scheduling a demonstration at your facility.