Proof of concept.

One of our container glass customers reported the following operational benefits with COROX LowNO\textsubscript{x}, based on a low up-front investment (EUR 140,000 – EUR 150,000) and annual operating expenses between EUR 70,000 and EUR 75,000.

Parameter	Standard air/fuel furnace	COROX® LowNO\textsubscript{x} furnace
Fuel, natural gas | 1000 Nm\textsubscript{3}/h | 965 Nm\textsubscript{3}/h
Additional oxygen | 100 Nm\textsubscript{3}/h | 700 – 800 Nm\textsubscript{3}/h
NO\textsubscript{x} level | 1200 – 1400 mg/m3 | 600 – 700 mg/m3
Pull rate | 260 t/d | 260 t/d

Global
Rainer Meeth
Product Life Cycle Manager for COROX® LowNO\textsubscript{x}
rainer.meeth@linde.com

Austria
Martin Schöninger
Application Engineer
martin.schoeninger@austria.linde-gas.com

Benelux
Gjibert Goemendijk
Application Engineer
gjibert.goemendijk@linde.com

Czech Republic
Josef Kameny
Senior Application Engineer
josef.kameny@linde.com

France
Xavier Barrier
Application Engineer
xavier.barrier@linde.com

Germany
Matthias Görisch
Market Development, Metallurgy/Glass
matthias.goerisch@de.linde-gas.com

Italy
Alessandro Curti
Manager Gas Applications
alessandro.curti@it.linde-gas.com

Poland
Krzysztof Mochocki
Product Manager Glass
krzysztof.mochocki@pl.linde-gas.com

Spain
Antoni Tardio
Market Development, Manager Glass
antoni.tardio@es.linde-gas.com

Linde AG
Gas Division
Seiterstrasse 78, 82049 Pullach, Germany
Growing pressure on glass manufacturers.

Increasingly strict EU legislation is placing growing pressure on glass furnace operators to limit emissions, with attention focusing on nitrogen oxides in particular. Nitrogen oxides (mainly NO and NO₂) – known as NO\textsubscript{x} – react with oxygen in the air to produce ground-level ozone. The amount of NO\textsubscript{x} present in furnace flue gases must be measured for the purposes of compliance. These values are reported in milligrams per normal cubic metre (mg/Nm3) in dry flue gas, based on 8% residual oxygen. In glass furnaces, NO\textsubscript{x} is mainly caused by thermal NO\textsubscript{x} and – to a lesser extent – fuel NO\textsubscript{x}.

Because of the health and environmental risks associated with NO\textsubscript{x}, new European legislation, for instance, limits NO\textsubscript{x} emissions to 800 mg/Nm3 – which is a significant reduction compared with current emission levels in many furnaces. These new threshold values are due to come into effect at the end of 2013, which means that glass manufacturers need to take action now.

Our new COROX® LowNO\textsubscript{x} solution can help you meet ever stricter compliance requirements, keeping your NO\textsubscript{x} emissions within a 500 – 800 mg/Nm3 corridor.

Time to act.

Best fit for today’s glass production challenges.

COROX LowNO\textsubscript{x} is a unique patent-pending fuel dilution and gas conditioning technology suited to both regenerative and recuperative endpoint glass furnaces. It employs special horizontal oxygen lances, which can be combined with oxyfuel burners, to create atmospheric conditions that result in substantially reduced NO\textsubscript{x} emissions. It can be fitted to new furnaces or easily added to existing facilities with minimal space requirements.

Put our expertise to work for you.

We combine this innovative technology with the vast process know-how and experience we have gained serving glass customers over the years to analyse your individual requirements and engineer a package tailored to your specific furnace and productivity needs. Our offering extends from this initial consultation through installation of oxygen lance technology and oxyfuel burners to fine-tuning the control equipment.

So how does it work?

Additional oxygen is injected through high-pressure lances to create a more intense, directional flue gas recirculation effect within the furnace. As a result, the main air/gas burner system produces a diluted, staged combustion process. Fuel dilution leads to a more homogeneous flame and a reduced flame temperature. As the flame temperature has a direct impact on NO\textsubscript{x} levels, this lowers emissions significantly.

A lower flame temperature also reduces the concentration of hydrocarbon radicals in the furnace, thereby limiting NO\textsubscript{x} formation. In addition, an improved heat transfer rate shortens the window during which NO\textsubscript{x} can form.

You can combine oxygen lances with oxyfuel burners to reduce NO\textsubscript{x} emissions even further or increase your melting capacity by 5 – 15% while still complying with upcoming EU legislation.

COROX® is a registered trademark of The Linde Group.